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The Problem



Normative Prediction Principles

1) The “extremeness” of predictions should be moderated by “predictability” 
2) Predictability is commonly measured by “predictive validity” (ie, correlation 

between outcomes and forecasts)
a) When predictability is perfect (r = 1.0), the forecast is the best prediction
b) When predictability is zero (r = 0.0), the mean (ie, prior or base rate) is the best 

forecast
c) For intermediate situations, a weighted average of the forecast and base rate 

prediction is best

3) This became the basis for Reference Class Forecasting



• RCF developed by Daniel Kahneman and Amos Tversky to 

correct consistent human errors in forecasting:

Source: Daniel Kahneman, 2011, Thinking, Fast and Slow (New York: Farrar, Straus and Giroux) 

• Over-reliance on “inside view” (ie, specific, unique details and 

features) of projects when forecasting completion times, 

probability of success, investment returns, etc

• Under-reliance on known distributions of historical outcomes for 

similar projects or “outside view”

• Common manifestation of inside-view is the well documented 

“planning fallacy”

• Affects expert and layperson forecasts equally

Kahneman & Tversky Reference Class Forecasting 
(RCF)



Kahneman & Tversky Corrective (RCF) 
Method

• Their procedure adopted Truman Kelley’s “true score” regression 
approach:
• … the best estimate is obtained by regressing the observed [forecast] in the direction of the mean 

[of the reference class] Wainer. Chance 2000.

• The result is a weighted average between the mean of the reference 
class distribution and the SME forecast

𝑩𝒆𝒔𝒕𝒆𝒔𝒕 = 𝑷𝑽×𝑺𝑴𝑬𝑬𝒔𝒕 + 𝟏 − 𝑷𝑽 ×𝑹𝑪𝑭𝑬𝒔𝒕

Estimate “predictive validity” (ie, 
correlation) between SME 

forecasts and actual outcomes

𝑷𝑽𝒆𝒔𝒕

Combine RCF (Outside View) with 
SME (Inside View) Forecast

Obtain “inside view” 
SME forecast for specific 

task (eg, PTS)

Obtain distribution of 
outcomes from similar class of 
projects (eg, Reference Class)



• The inside-view team forecast probability density function (PDF) is 
“regressed” towards the reference class distribution proportional to the 
predictive validity 

The Effect of Reference Class Forecasting?

Team Inside 
View 

Forecast

Reference Class 
Distribution

RCF Adjusted 
Forecast



Example #1 – XYZ BioPharma PPOS Correction

• You are a consultant for XYZ BioPharma Corporation asked to evaluate the team’s 
predicted probability of success (PPOS) for an important upcoming clinical trial. The 
company keeps detailed records of all development team forecasts and final study 
outcomes that can be used as our reference class. 

• Analysis of the historical data** shows that over the last 7 years the company conducted 
81 studies with 32 successes, for 32/81 ≈ 40% frequency of success (FOS) with the 
corresponding team forecasts showing an average predicted success rate of 60%. 

• The current team’s PPOS for the planned study is 70%. Assessment of the historical 
PPOS forecasts and outcomes show that the predictive validity of the team forecasts = 
0.29.

**All data are hypothetical, generated using monte-carlo methods and/or expert input



Example #1 – XYZ BioPharma PPOS Correction

• Using the KT RCF formula described earlier, the revised PPOS 70% forecast 
becomes 48%:

• As expected, the team forecast has been regressed towards the reference 
class mean

PPOS!"# = 0.29×70%+ 1 − 0.29 ×40% = 48%



Bayesian Inference Conjugate Models

• Bayes Rule: 𝑝 𝜃|𝑥 ∝ 𝑝 𝜃 𝑝 𝑥|𝜃 ; posterior ∝ prior x likelihood

• If posterior and prior are in same distribution family (eg, normal), they 
are termed “conjugate distributions”

• Conjugate distributions allow for simple, closed form solutions for 
posterior



Important Conjugate Models for RCF
• Bernoulli Outcomes: 
• Beta prior simple updating rule
• Beta Posterior: Beta(a’, b’) = Beta(a + ns, b + nf); 
• where a = successes, b = failures, ns = new successes, nf = new 

failures

• Continuous Normal Outcomes: 
• Normal prior simple updating rule
• Normal prior: N m!, s!" , Normal observation: N 𝑦, 𝜎"
• Normal posterior: N 𝑚#, s$"  where:

•  𝑚! =
!"%
!"&

𝑚# +
!"'
!"&

y, where pr = precision = 1/variance
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; or posterior precision = sum of precisions



Recasting RCF using Bayesian Conjugate 
Models

• There are two connections between RCF and Bayes rule that are useful:
• A) Bayes rule and RCF approaches are both weighted averages between a prior and additional information 
• B) Both approaches must “weigh” the value of the additional information relative to the prior (think base-rate)

• This allows one to link the two concepts:

Number
Kahneman – Tversky 

Concept
Bayes Rule Comment(s)

1 Reference Class (Base Rate) 
Distributional Data Informed Prior distribution The prior is an “informed” distribution for the quantity of interest, based on 

previous or relevant data in contrast to a flat or uniform prior

2 Inside View (Team) Forecast New information or data
The subjective forecast provides new information from the team that can be 
used to calculated a posterior (best estimate) distribution

3 Predictive Validity

• Bernoulli Model – Estimates Effective 
Sample Size (ie, weight) for Beta 
Distributions

• Normal Model – Estimates precision (ie, 
weight) for Gaussian Distributions

Predictive validity is used with the priors to estimate the effective sample 
size or precision (ie, the impact weights) for new information (ie, the 
uncorrected forecast)

4 Corrected/Recalibrated Forecast Posterior Distribution
The posterior distribution is the best estimate for the forecast of interest 
and can be used to calculate point estimates, uncertainty ranges, etc

Source: Adapted from Comfort S.  Estimating Predictive Probability of Success. Foresight. Issue #72, 2024.



Example #1 – Revisited from Bayesian 
Perspective

1) Create a beta distribution prior equivalent to the base rate: 
• Equivalent sample size = 32 successes + 49 failures = 81 total trials
• Informed Prior = Beta( 32, 49) distribution shown below

Source: Adapted from Comfort S.  Estimating Predictive Probability of Success. Foresight. Issue #72, 2024.



Example #1 – Revisited from Bayesian 
Perspective

2) Estimate posterior and team forecast effective sample size (ESS): 
• Posterior ESS = Nprior/(1 – Pv) = 81/(1 – 0.29) ≈ 114

3) Since Nposterior = Nprior + Nforecast, solve for Nforecast (ESS): 
• Forecast ESS = Nforecast = 114 – 81 = 33

4) Set team forecast = forecast Beta distribution mean to find the 
hyperparameters (a and b values): 
• Forecast Mean = 70% = a_value/ESS = a_value/33 => a_value ≈ 23
• Therefore b_value = 33 – 23 = 10

Source: Adapted from Comfort S.  Estimating Predictive Probability of Success. Foresight. Issue #72, 2024.



Example #1 – Revisited from Bayesian 
Perspective

• The resulting beta distributions for the prior and team forecast are 
shown below:

Source: Adapted from Comfort S.  Estimating Predictive Probability of Success. Foresight. Issue #72, 2024.



Example #1 – Revisited from Bayesian 
Perspective

5) Finally, determine hyperparameters for posterior by updating prior:
• Posterior = Beta( 32 + 23, 49 + 10) = Beta( 55, 59)
• The Prior, Team Forecast, and Posterior PDFs are shown below

Source: Adapted from Comfort S.  Estimating Predictive Probability of Success. Foresight. Issue #72, 2024.



Example #1 – Bayesian Perspective Final Points
• Bayesian results are probability distributions, not point estimates
• Relevant point estimates (eg, mean, standard deviation, etc) are easily determined (see 

table example below)
• The KT RCF Mean and Bayesian Mean will be equal
• The distributions are critical to showing the uncertainty in the estimates for both 

decision makers and teams
KT RCF PPOS Estimates Bayesian PPOS Estimates

Variable Mean Variable Mean P10 P50 P90

Team PPOS 70% Team PPOS 70% 60% 70% 80%

Base Rate 40% Prior PPOS 40% 33% 39% 47%

Recal PPOS 48% Post PPOS 48% 42% 48% 54%

Source: Adapted from Comfort S.  Estimating Predictive Probability of Success. Foresight. Issue #72, 2024.



Example #2 – XYZ BioPharma Peak Sales (PkS) 
Correction

• You are now asked to evaluate the team’s predicted PkS for the product, assuming a 
successful trial from Example #1. 

• Similar to POS, the company keeps detailed records of all previous PkS forecasts and 
outcomes that can be used as our reference class. 

• The current team’s PkS forecast at 5 years post-launch = $750 M USD**.  No high or low 
uncertainty bounds are provided

• The following slide shows the result of historical analysis of PkS forecasts and outcomes

**All data are hypothetical, generated using monte-carlo methods and/or expert input



Example #2 – XYZ PkS Forecast Accuracy

• XYZ past PkS data** collected for 16 
products, inflation corrected to current 
year, and analyzed 

• Correlation analysis shows r = predictive 
validity = 0.34

• Descriptive analysis shows actual PkS 
outcomes follow log normal distribution 
with Ln Mean = 4.9 and SD = 1.6

• Implies strongly right skewed distribution 
with Mean ≈ $483 M and SD ≈ $1670 M

**All data are hypothetical, generated using monte-carlo methods and/or expert input



Example #2 – Historical Forecast Accuracy, 
cont

• As sanity check, public data from DiMasi 
et al 2004 used to estimate distribution of 
PkS, inflated to current year

• DiMasi results also show log normal 
behavior with Ln Mean = 5.3 and Sd = 1.7; 
equivalent to Mean ≈ $840 M and SD ≈ 
$3500 M

• Di Masi and implied XYZ probability 
density functions (PDFs) shown in graph 
to right

• Both distributions exhibit significant right 
skewing 

**All XYZ data are hypothetical, generated using monte-carlo methods and expert input



Example #2 – Bayesian Updating with Normal 
Model

• Published Pharma PkS and XYZ actual PkS appear as strongly skewed normal 
distributions, allowing use of Bayesian Normal Conjugate model to correct team PkS 
forecasts
• Perform the math in “normal” space and convert to “logs” for visualization and 

understanding*
• Here the conjugate normal model uses precision (ie, 1/variance) with predictive 

validity to “weigh” the prior and posterior:
• Prior precision = 1/variance = 1/16702 ≈ 3.6e-7
• Posterior precision = Precisionprior/(1 – Pv) = 3.6e-7/(1 – 0.34) ≈ 5.2e-7

*Note – Calculations here are performed in ‘normal’ space to avoid back-and-forth conversion between natural and log-normal parameters.



Example #2 – Bayesian Updating with Normal 
Model, cont.

• Posterior precision = Prior + Forecast precisions, so we can solve for team forecast precision:
• Forecast Precision = Precisionposterior – Precisionprior = 1.6e-7

• Finally use normal updating rule from Slide 10 to specify posterior as weighted average of 
prior and team forecast

• Posterior Mean = 
234567689!"#$"
234567689!$%&

𝑚𝑒𝑎𝑛23683 +
234567689'$"()*%&
234567689!$%&

𝑚𝑒𝑎𝑛:8345;7<

• Numeric results are shown in the table below along with Bayesian Triplot (next slide) and KT 
RCF result

Mean Precision SD

Prior $483 3.6e-7 $1,670
Forecast $750 1.8e-7 $2,327
Posterior $574 5.4e-7 $1,299

KT RCF $483 N/A N/A



Example #2 – Bayesian Updating with Normal 
Model, cont.

• Note due to the skewed nature of the distributions, PDF peaks correspond to medians and not 
means

• The graphs below illustrate the Bayesian PDF Triplot (left) and the associated Cumulative 
Probability Distributions (CDFs, right)

• The final corrected conditional XYZ PkS mean forecast is now approximately $573 M with an SD 
≈ $1,300 M



Example #2 – How to Use the Results?
• One straightforward use is to ask for the conditional probability of “exceedance”
• Here we use the team original PkS forecast of $750M USD and ask:

• What is Probability of exceeding or falling short of the team’s result?

Prob PkS ≥ Forecast 19%

Prob PkS < Forecast 81%

• Visual inspection and calculating the area under the 
curve shows meeting the forecast is very unlikely (ie, 
Prob < 25%)

• This information can be useful for decision makers



Putting It All Together: Risk Adjusted Peak 
Sales

• To estimate the unconditional PkS (ie, before study outcome known):
• Draw 25,000 random samples from the POS and PkS distributions and multiply them
• Generate histogram of the risk-adjusted (aPkS) distribution
• Graphs below show the resulting aPkS density and cumulative distributions:

• Resulting Risk Adjusted PkS Mean ≈ $280 M and Median ≈ $100 M 



Observations
• Kahneman & Tversky’s RCF procedure can be effectively recast as Bayesian 

inference using Conjugate Distributions
• Feasible for both Binary and Continuous data
• Produces full distributions suitable for estimating means, credible intervals, etc
• Approach is simple, transparent, and easily implemented in standard excel
• Provides decision makers with quantitative, visual de-biasing method for evaluating 

“promoter” forecasts

• Caviats:
• The Normal Conjugate model can be “clunky” to implement (eg, with highly skewed 

non-negative data, etc)
• Log-Normal conversion may ‘over predict’ outliers (eg, long-broad PkS tail?)
• Metalog distributions may be a suitable alternative?



Example #2 – RCF with Metalogs?
• The graphs below illustrate the same PDF Triplots (left) and the associated Cumulative 

Probability Distributions (CDFs, right) from Example #2 – using SPT Meta-logs
• Performing the same “exceedance” analysis shows: 
• Results are similar although general PDF/CDF shapes differ

Prob PkS ≥ Forecast 16%
Prob PkS < Forecast 84%



Concluding Thoughts

• Kahneman & Tversky’s RCF procedure can be effectively recast as 
Bayesian inference using Conjugate Distributions:
• Predictive validity provides “weight” for new observations (ie, forecasts)
• Bernoulli data effectively modeled with Conjugate Beta Distributions
• Continuous data can be modeled with Conjugate Normal Distributions – 
but
• Metalog distributions (SPT3 or higher) should be considered for situations with 

highly skewed, unbounded or bounded, continuous data
• At minimum, consider Metalog formulation as a “sanity” check to compare with 

Conjugate Normal approach
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